Tinkering Under the Hood: Interactive Zero-Shot Learning with Net Surgery

نویسندگان

  • Vivek Krishnan
  • Deva Ramanan
چکیده

We consider the task of visual net surgery, in which a CNN can be reconfigured without extra data to recognize novel concepts that may be omitted from the training set. While most prior work make use of linguistic cues for such ”zero-shot” learning, we do so by using a pictorial language representation of the training set, implicitly learned by a CNN, to generalize to new classes. To this end, we introduce a set of visualization techniques that better reveal the activation patterns and relations between groups of CNN filters. We next demonstrate that knowledge of pictorial languages can be used to rewire certain CNN neurons into a part model, which we call a pictorial language classifier. We demonstrate the robustness of simple PLCs by applying them in a weakly supervised manner: labeling unlabeled concepts for visual classes present in the training data. Specifically we show that a PLC built on top of a CNN trained for ImageNet classification can localize humans in Graz-02 and determine the pose of birds in PASCAL-VOC without extra labeled data or additional training. We then apply PLCs in an interactive zero-shot manner, demonstrating that pictorial languages are expressive enough to detect a set of novel visual classes in MS-COCO.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tinkering Under The Hood: Interactive Zero-Shot Learning with Pictorial Classifiers

We consider the task of visual zero-shot learning, in which a system must learn to recognize concepts omitted from the training set. While most prior work make use of linguistic cues to do this, we do so by using a pictorial language representation of the training set, implicitly learned by a CNN, to generalize to new classes. We first demonstrate the robustness of pictorial language classifier...

متن کامل

One-Shot Reinforcement Learning for Robot Navigation with Interactive Replay

Recently, model-free reinforcement learning algorithms have been shown to solve challenging problems by learning from extensive interaction with the environment. A significant issue with transferring this success to the robotics domain is that interaction with the real world is costly, but training on limited experience is prone to overfitting. We present a method for learning to navigate, to a...

متن کامل

Generalized Zero-Shot Learning for Action Recognition with Web-Scale Video Data

Action recognition in surveillance video makes our life safer by detecting the criminal events or predicting violent emergencies. However, efficient action recognition is not free of difficulty. First, there are so many action classes in daily life that we cannot pre-define all possible action classes beforehand. Moreover, it is very hard to collect real-word videos for certain particular actio...

متن کامل

A Unified approach for Conventional Zero-shot, Generalized Zero-shot and Few-shot Learning

Prevalent techniques in zero-shot learning do not generalize well to other related problem scenarios. Here, we present a unified approach for conventional zero-shot, generalized zero-shot and few-shot learning problems. Our approach is based on a novel Class Adapting Principal Directions (CAPD) concept that allows multiple embeddings of image features into a semantic space. Given an image, our ...

متن کامل

Tinkering with Interactive Materials Studies , Concepts and Prototypes

The concept of tinkering is a central practice within research in the field of Human Computer Interaction, dealing with new interactive forms and technologies. In this thesis, tinkering is discussed not only as a practice for interaction design in general, but as an attitude that calls for a deeper reflection over research practices, knowledge generation and the recent movements in the directio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1612.04901  شماره 

صفحات  -

تاریخ انتشار 2016